管理折扣促销活动(“ Markdown”)是经营电子商务业务的重要组成部分,这里的效率低下可能会严重阻碍零售商的盈利能力。解决此问题的传统方法在很大程度上取决于价格弹性建模。但是,价格弹性建模的部分信息性质,以及保护盈利能力的不可谈判的责任,意味着机器学习从业人员经常必须经过巨大的时间来定义衡量离线模型质量的策略。面对这一点,许多零售商依靠基于规则的方法,因此可以通过机器学习来捕获的盈利能力获得可观的收益。在本文中,我们介绍了两个新颖的端到端降价管理系统,以优化零售商旅程的不同阶段的赌注。第一个系统“ ITHAX”制定了无需估算的理性供应方定价策略,并且可以用作“冷启动”解决方案,以收集降价数据,同时保持收入控制。第二个系统“ Prosotheus”为价格弹性提供了一个完整的降价优化的框架。我们详细描述了特定的建模和验证程序,在我们的经验中,这对于建立在现实世界中稳健性能的系统至关重要。与我们经验丰富的运营团队在受控的在线测试中做出的决策相比,这两种降级系统都具有卓越的盈利能力,相对于手动策略,改善了86%(Promotheus)和79%(ITHAX)。这些系统已被部署以在ASOS.com上管理Markdown,并且可以在各种零售电子商务环境中进行价格优化的价格优化。
translated by 谷歌翻译
是否可以在深网络中重组非线性激活函数以创建硬件有效的模型?为了解决这个问题,我们提出了一个称为重组激活网络(RANS)的新范式,该范式操纵模型中的非线性数量以提高其硬件意识和效率。首先,我们提出了RAN-STHICER(RAN-E) - 一个新的硬件感知搜索空间和半自动搜索算法 - 用硬件感知的块替换效率低下的块。接下来,我们提出了一种称为RAN-IMPLICIC(RAN-I)的无训练模型缩放方法,从理论上讲,我们在非线性单元的数量方面证明了网络拓扑与其表现性之间的联系。我们证明,我们的网络在不同尺度和几种类型的硬件上实现最新的成像网结果。例如,与有效网络-lite-B0相比,RAN-E在ARM Micro-NPU上每秒(FPS)提高了1.5倍,同时提高了类似的精度。另一方面,ran-i以相似或更好的精度表现出#macs的#macs降低2倍。我们还表明,在基于ARM的数据中心CPU上,RAN-I的FPS比Convnext高40%。最后,与基于Convnext的模型相比,基于RAN-I的对象检测网络在数据中心CPU上获得了类似或更高的映射,并且在数据中心CPU上的fps高达33%。
translated by 谷歌翻译
随着在充满挑战的环境中越来越需要多机器人探索未知区域的需求,需要有效的协作探索策略来实现此类壮举。可以部署基于边界的快速探索随机树(RRT)探索来探索未知的环境。然而,它的贪婪行为导致多个机器人探索收入最高的地区,从而导致勘探过程中大规模重叠。为了解决这个问题,我们提出了基于时间内存的RRT(TM-RRT)探索策略,用于多机器人在未知环境中执行强大的探索。它根据每个机器人的相对位置计算分配的每个边界的自适应持续时间,并计算边界的收入。此外,每个机器人都配备了由分配的边界和舰队共享的内存,以防止重复对同一边界的分配。通过模拟和实际部署,我们通过在25.0m x 540m(1350.0m2)区域完成勘探,展示了TM-RRT勘探策略的鲁棒性,而常规的RRT勘探策略则不足。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
医疗人工智能(AI)的最新进展已提供了可以达到临床专家水平绩效的系统。但是,当在与训练环境不同的临床环境中评估时,这种系统往往会证明次优的“分布式”性能。一种常见的缓解策略是使用特定地点数据为每个临床环境开发单独的系统[1]。但是,这很快变得不切实际,因为医疗数据很耗时,可以注释且昂贵[2]。因此,“数据有效概括”的问题给医学AI开发带来了持续的困难。尽管代表性学习的进展显示出希望,但并未对其好处进行严格的研究,特别是用于分布的设置。为了应对这些挑战,我们提出了RESEDIS,这是一种统一的代表学习策略,以提高医学成像AI的鲁棒性和数据效率。雷雷迪斯使用大规模监督转移学习与自我监督学习的通用组合,几乎不需要特定于任务的自定义。我们研究各种医学成像任务,并使用回顾性数据模拟三个现实的应用程序场景。 RESEDIS表现出明显改善的分布性能,而在强有力的基线上,诊断准确性相对相对提高了11.5%。更重要的是,我们的策略会导致对医学成像AI的强大数据有效的概括,并使用跨任务的1%至33%的重新培训数据匹配强有力的监督基线。这些结果表明,Repedis可以显着加速医学成像AI开发的生命周期,从而为医学成像AI提供了重要的一步,以产生广泛的影响。
translated by 谷歌翻译
许多自然语言处理任务,例如核心解决方案和语义角色标签,都需要选择文本跨度并就其做出决定。此类任务的典型方法是为所有可能的跨度评分,并贪婪地选择特定任务的下游处理的跨度。然而,这种方法并未纳入有关应选择哪种跨度的诱导偏见,例如,选定的跨度倾向于是句法成分。在本文中,我们提出了一种新型的基于语法的结构化选择模型,该模型学会了利用为此类问题提供的部分跨度注释。与以前的方法相比,我们的方法摆脱了启发式贪婪的跨度选择方案,使我们能够在一组最佳跨度上对下游任务进行建模。我们在两个流行的跨度预测任务上评估我们的模型:核心分辨率和语义角色标签。我们对两者都展示了经验改进。
translated by 谷歌翻译
通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译
声带煎炸或吱吱作响的声音是指以不规则的发光开口和低音为特征的语音质量。它以各种语言发生,并且在美国英语中很普遍,不仅可以标记词组结局,还用于社会语言因素和影响。由于其不规则的周期性,吱吱作响的声音挑战自动语音处理和识别系统,尤其是对于经常使用吱吱作响的语言。本文提出了一个深度学习模型,以检测流利的语音中的吱吱作响的声音。该模型由编码器和经过训练的分类器组成。编码器采用原始波形,并使用卷积神经网络学习表示。分类器被实现为多头完全连接的网络,该网络训练有素,可检测吱吱作响的声音,发声和音调,最后两个用于完善吱吱作响的预测。该模型经过对美国英语说话者的言语的培训和测试,并由训练有素的语音家注释。我们使用两个编码器评估了系统的性能:一个是为任务量身定制的,另一个是基于最新的无监督表示。结果表明,与看不见的数据相比,我们表现最佳的系统的回忆和F1得分有所改善。
translated by 谷歌翻译
自治系统对深度神经网络(DNN)的各种对抗攻击非常容易受到影响。由于其速度,易于部署以及在许多DNN上工作的能力,自由培训的模型 - 无症防御最近获得了普及。为此,已经出现了一种新技术,用于减轻对图像分类DNN的攻击,即使用超分辨率的预处理对抗性图像 - 将低质量输入提升为高分辨率图像。这种防御需要在受约束的自治系统上运行图像分类器和超分辨率模型。但是,超级分辨率招收了沉重的计算成本。因此,在本文中,我们调查以下问题:如果我们使用小型超分辨率模型,图像分类器的稳健性会受到痛苦吗?为了回答这一点,我们首先审查最近的工作称为超高效的超分辨率(SESR),其比现有技术更好地实现了类似或更好的图像质量,同时需要2x到330倍,乘法累积(MAC)操作较少。我们证明,尽管是比现有模型小的数量级,但SESR实现了与网络更大的稳健性相同。最后,我们在商业臂ETHOS-U55 Micro-NPU上估计基于超分辨率的防御的端到端性能。我们的研究结果表明,SESR在实现类似的稳健性时比基线实现了近3倍。
translated by 谷歌翻译
贝叶斯优化(BO)是用于全局优化昂贵的黑盒功能的流行范式,但是在许多域中,该函数并不完全是黑色框。数据可能具有一些已知的结构(例如对称性)和/或数据生成过程可能是一个复合过程,除优化目标的值外,还可以产生有用的中间或辅助信息。但是,传统上使用的代孕模型,例如高斯工艺(GPS),随数据集大小的规模较差,并且不容易适应已知的结构。取而代之的是,我们使用贝叶斯神经网络,这是具有感应偏见的一类可扩展和灵活的替代模型,将BO扩展到具有高维度的复杂,结构化问题。我们证明了BO在物理和化学方面的许多现实问题,包括使用卷积神经网络对光子晶体材料进行拓扑优化,以及使用图神经网络对分子进行化学性质优化。在这些复杂的任务上,我们表明,就抽样效率和计算成本而言,神经网络通常优于GP作为BO的替代模型。
translated by 谷歌翻译